
Performance Evaluation 68 (2011) 1193–1206

Contents lists available at SciVerse ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

ShiftFlash: Make flash-based storage more resilient and robust
Ping Huang a, Ke Zhou a,∗, Chunling Wu b

a School of Computer Science & Technology, Huazhong University of Science & Technology, Key Laboratory of Data Storage Systems, Ministry of Education of
China, Wuhan National Lab for Optoelectronics, China
b Guilin Normal College, Guilin, China

a r t i c l e i n f o

Article history:
Available online 3 August 2011

Keywords:
CDP
Flash-storage
Recovery
SSD
Time-shifting

a b s t r a c t

Flash based storage technology has been steadily gainingmore andmore popularity during
the past decades due to its uniquemerits over conventional disk counterparts and has been
projected to revolutionize the entire storage hierarchy. Though it is well-known that flash
storage is physically more reliable than hard disk drives within its limited lifespan, neither
of them provide sophisticated built-in mechanisms guarding against non-physical failures,
such as virus attacks and unintentional errors. One of the unique characteristics of flash
is ‘‘no in-place overwrites’’, which would cause a large amount of superseded pages/data
to remain in the flash until they are selected to be erased by a garbage collection process.
Leveraging this idiosyncrasy, we propose ShiftFlash, which provides flash based storage
with time-shifting functionality to make it more robust and resilient. By monitoring and
recording the modifications of the FTL mapping table, ShiftFlash enables flash state to
be reverted to any point-in-time (PiT) in the past. It is implemented within SSD devices
and needs minimal support from the upper layer. The trace-driven simulation results of
a range of different workloads show that ShiftFlash only introduces marginal overheads
with respect to several principal performance metrics, somewhere between 6% and 11%,
compared with the original non-shifting flash. ShiftFlash also outperforms other time-
shifting schemes by a large extent in many respects.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, Flash Memory based Solid-state Drives (SSDs) have been widely used in mobile devices and
laptops [1,2] and are becoming more and more popular even in large-scale data centers [3,4]. It’s been said that flash
technology has the potential to fundamentally change the current storage hierarchy. SSD has enjoyed its amazing success
for its salient features which are commonly cited as extremely low random read access latency, high shock resistance,
reasonable high reliability, low power consumption, non-volatility and small form size. Those superior merits mainly result
from the absence of themechanicalmoving components which dominate the high access latency of hard disk drives (HDDs).
But, on the other hand, it also suffers from several inherent limitations imposed by the physical properties of its chip
components, including notorious small randomwrite performance, limited life cycles. The vast majority of existing research
work was aiming at mitigating the limitations in order to make it work better and explore possible usage spaces of SSDs.
For example, a variety of data layouts and FTL algorithms and implementations [5–13] have been proposed and judiciously
evaluated to overcome those limitations. SSDs have also been deployed to be integrated into the storage hierarchy, either
as an added tier like read/write cache layer [14–16] or as a component of hybrid storage architecture [17–19].

∗ Corresponding author.
E-mail addresses: pinghp.hust@gmail.com (P. Huang), k.zhou@hust.edu.cn (K. Zhou), wcl0203107@21cn.com (C. Wu).

0166-5316/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2011.07.010

http://dx.doi.org/10.1016/j.peva.2011.07.010
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:pinghp.hust@gmail.com
mailto:k.zhou@hust.edu.cn
mailto:wcl0203107@21cn.com
http://dx.doi.org/10.1016/j.peva.2011.07.010


1194 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

Flash based storage (e.g. SSD) is mainly considered to be more reliable compared with HDDs for its lack of mechanical
moving parts. Since in HDDs, when the disk spindle is moving quickly, it is much more subject to vibration or shock and is
more prone to be erroneous. Rather than using magnetic material to store bit information which is the case with rotating
disks, flash uses transistors and a floating gate [20] to keep information. The trapped charge states of the floating gate are
distinguished as two states, corresponding to 0 and 1, respectively. Due to such different underlying storage mechanisms,
flash storage can provide a better guard against physical failures and thus is guaranteed to be more reliable. Put another
way, it’s more physically reliable. However, such reliability alone is sometimes not adequate in certain scenarios, e.g. in the
event of software errors, unintentional mistakes, malicious operations, virus attacks and the like. Under such circumstances,
Continuous Data Protection (CDP) [21] technology is highly desirable. CDP is a paradigm in backup and recovery and ameans
of reliability guarantees. The key idea of CDP is to continuously capture and keep the happening I/Os to the protected targets.
It allows the storage state to be potentially reverted to any point-in-time in the past [22] by restoring appropriate previously
kept history data. The CDP function can be realized at different levels of the data path, e.g. at file system level [23–25] or at
block level [26].

SSDs based on flash differ themselves fromHDDs inmany important aspects. One of themost distinctive characteristics is
that they do not support ‘‘in-place overwrites’’. Another one is that they exhibit ‘‘erase-before-write’’ idiosyncrasy. Usually,
there is amapping table in the SSD controller whichmaps logical page numbers (LPN) to physical page numbers (PPN) of the
underlying storage chips. Handling every write request, flash would first check whether it is a new write, if so, it allocates a
new erased page to store the data, and then updates the mapping table to reflect the logical page’s new location; otherwise,
it writes the data to a newly allocated page, updates the correspondingmapping entry and at last marks the previous PPN as
invalid (therefore called superseded pages [6]). The superseded pages are reclaimed by erasure operations afterwards. Thus,
overwritesmay cause significant superseded pages [27] to linger for a period of timewhose length depends on the reclaiming
policy. Those superseded pages represent the old versions of the data, and thus can be potentially deployed to implement
time-shifting functionality.

Leveraging this potential opportunity, we propose ShiftFlash in this paper, which is a kind of flash with added CDP
functionality. The rationale behind ShiftFlash is to make it guard against logical errors without incurring noticeable
overheads to the original architecture by exploiting the inherent opportunity. We believe that as the deployment of flash
based SSDs are steadily getting more widespread [28] and the vital importance of data and applications, especially business
continuity, to enterprizes remains unchangeable, ShiftFlash would potentially perform an important role in future storage
systems and data protection regimes. Our main contribution is that we developed a novel flash based SSD architecture
implementing an expensive data protection scheme in a lightweight manner. We hope ShiftFlash would be of some help to
system architects, especially hardware designers and implementers in manufacturing robust and resilient flash storage.

The remainder of this paper is organized as follows: Section 2 gives some background knowledge about both flash
storage and CDP technology. Section 3 deals with the implementation details of ShiftFlash. Section 4 presents the evaluation
methodology and results. A discussion about ShiftFlash is presented in Section 5. Section 6 overviews relatedworks. Section 7
ends this paper with a concluding remark.

2. Background

2.1. Flash and SSDs background

Flash chips are a kind of non-volatile storage media and are the basic building blocks of SSDs. Flash memory is further
categorized into NOR and NAND according to the architecture of the underlying transistors and floating gates [29,30]. A
flash memory package consists of one or more dies (chips), each of which is segmented into units of planes. Each plane
typically contains thousands (e.g. 2048) of blocks, which are further partitioned into a number (e.g. 64–128) of fix-sized
pages. In addition to the data area, each page also contains a spare area that is used to store auxiliary information such as
Error Correction Code (ECC) and its corresponding reversely mapped logical page number. Flash supports three types of
operations which are read, write/program and erase. Read and write operations are performed in units of page and can be
completed in tens or hundreds of microseconds, while erase operations are relatively much more expensive and can only
be performed at block granularity, taking several milliseconds [6].

Due to the floating gate’s charge trapping and detrapping phenomenon, flash suffers from several important technical
limitations. One of them is ‘‘no in-place overwrites’’, i.e. overwrites cannot be performed directly in an in-place manner,
resulting from the fact that pages can only bewritten after being erased. In order to overcome this limitation, a software layer
FTL is implemented in the flash controller. FTL translates logical block addresses to physical block addresses and makes the
flash export block interfaces like traditional disks. Existing FTL algorithms are broadly categorized into blockmapping [7,31],
pagemapping [12] and hybridmapping [9,11,32] according to the adoptedmapping granularity. FTL enables the same logical
block address to associate with different physical locations of the flash at different times, masking its peculiarities from
upper layer applications and rendering erase operations out of the write path, which improves performance. A variety of
FTL schemes and algorithms have been proposed in the research literature [5,8,13]. Thanks to the presence of FTL, overwrites
are handled in a ‘‘read-modify-write’’ fashion and are in-directed to be sequentially written in erased blocks at a potential
cost ofwrite amplification [33]. Another critical shortcoming is that flash can only sustain a limited number of program/erase



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1195

(a) Flash architecture. (b) ShiftFlash architecture.

Fig. 1. Flash and ShiftFlash architectures.

(P/E) cycles, typically ranging from 10 to 100 K for MLC NAND and SLC NAND respectively, after which the bit error rates
would become unacceptable and the data retention would be unreliable [34]. The block that runs out of its limited cycles
is called worn out. In order to prevent the flash from prematurely breaking down due to it being partially worn out, two
techniques namedwear-leveling and garbage collection have been deployed to improve flash endurance. Themain purpose
of wear-leveling is to attempt to guarantee that all the blocks of the flash are evenly worn-out. The function of the garbage
collection is to periodically recycle the superseded pages through block erasing in order to keep a set of free blocks available
at any time.

An SSD is typically comprised of a host interface logic, an array of flash packages, a controller implementing FTL, wear-
leveling, garbage collection, a flash multiplexer (mux/demux), buffer manager and peripheral circuitry. The host interface
logic is used to accommodate SSDs to host interface connection. The controller containing a processor and additional RAM
does sanity checks like ECC and performs address translation, wear-leveling algorithm, garbage collection. The multiplexer
decodes received commands, executes low-level flash commands and handles data transport. The buffer manager holds
pending requests and satisfies requests [6]. SSDs are often over-provisioned, i.e. the raw capacity is larger than their
advertised capacities, in order to provide better performance. Fig. 1(a) shows the logical block diagram of a typical SSD.

2.2. Time-shifting function

The time-shifting function [24], also called Continuous Data Protection [21], is a data protection scheme that can ensure
data resiliency and reliability [35] n the time dimension. It is widely deployed in organizations and corporations, usually
together with snapshots [36] or periodical backups. By continuously (the frequency depends on the preset protection
granularity) monitoring the updates of the protected targets and logging the history data, CDP allows the storage state to be
rolled back to any point-in-time in the past, i.e. access earlier versions of the data, which is an important necessary property
to ensure business continuity. It can be implemented either at file system level or block level using copy-on-write or indirect-
on-write techniques [36]. For every comingwrite request, itwould reserve a copyof the data aswell as thewriting timestamp
before overwriting the data. There are two key concepts related to data recovery, which are Recovery Point Objective (RPO)
and Recovery Time Objective (RTO). The twometrics are used to characterize the efficacy of a recovery process after failures
have occurred. RPOs are the reversible time points available that can be reverted to; they are determined by the protection



1196 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

Fig. 2. The evolution of superseded pages generation.

granularity and imply the amount of potential data loss in terms of time length. RTOs represent the time period taken by
recovery processes before the system can resume. The ideal value of RTOs is zero, which means recovery processes would
be completed instantly. The recovery performance is mainly determined by how the metadata are indexed, searched and
where the captured history data are stored, e.g. locally or remotely.

3. ShiftFlash design and implementation

As mentioned previously, the key idea of ShiftFlash is to take advantage of remnant superseded pages to make flash
time-travelable. The superseded pages would remain invalid and unusable until they are erased at some time in the future.
However, on the other hand, they could potentially be accessed by preserving old mapping entries. Since time-traveling
functionality mandates the preservation of history data, we implement a CDP_Store module in ShiftFlash. Every time a FTL
mapping entry is going to be updated, it is in advance backed up to CDP_Store. The CDP_Store can be hosted on a purposely
reserved portion of the flash or on an added-on component, like PCM [37] for quick accesses. It provides interfaces for
handling recovery commands, storing, retrieving and deleting previous FTL entries. Theoretically, as long as the superseded
pages remain superseded, i.e. they still have not been erased, the flash state can be reverted to a previous point-in-time by
restoring the appropriate FTL entries. Comparedwith the original architecture, ShiftFlash introduces an additional CDP_Store
component. The block diagram of ShiftFlash is shown in Fig. 1(b).

3.1. The generation of superseded pages

In a standard page mapping scheme, the FTL mapping table maps each logical page address (LPA) to a physical page
address (PPA). For everywrite request, FTLwould first look into themapping table to checkwhether it is a newwrite request
or an overwrite request. If it is a new write request, FTL allocates a new physical page to write the data and then adds the
newmapping entry into the mapping table, otherwise it takes the following steps: allocates a new physical page, writes the
data, atomically updates the corresponding mapping entry to reflect the logical page’s newmapped location, and after that
invalidates the previously mapped page. Thus, every page overwrite operation would give rise to a superseded page.

Fig. 2 shows the process of flash handling an exemplar sequence of write requests. The write requests are represented by
a series of tuples containingwriting logical addresses andwritten data whose sizes are all assumed to be the same and equal
to the flash page size (typically 2 or 4 kB). The left side shows the flash FTL mapping table and the right side shows flash
physical pages. In that figure, dotted arrows represent superseded and obsolete mapping relationship, while solid arrows
point to valid physical pages. From this figure, we know that the logical addresses’ associated physical pages are varyingwith
time due to their being overwritten. Superseded pages which are shaded in the figure are generated as a result of overwrite
operations. For example, when logical page 0 iswrittenwith data 0 for the first time, FTL initially assigns physical page 0 to it.
Later on, the fifth write request overwrites logical page 0 with new content data0’, causing physical page 0 to be superseded
and logical page 0 is updated to mapped to the newly allocated physical page 1. So it is the case with logical page 2, though
it incurs two superseded pages which are physical page 5 and page 9 since it has been overwritten twice.

It is worth noting that the figure doesn’t depict the real world scenarios totally. In that figure, we assume that each block
contains only four pages and the pages are allocated in a pseudo-random manner. For example, the allocated pages for the
first two consecutive requests are page 0 and page 5 which come from different blocks (PBN 0 and PBN 1). We keep this
simplicity for ease of demonstration. In real world situations, every block typically contains thousands of pages and pages
are allocated sequentially within individual blocks for better performance, as it is done with log buffer schemes [11,32].
The reason is that, if the pages are allocated in a pseudo-random way, it would be costly to reclaim them after they are
superseded, due to their wide distribution across flash blocks, which is thought to account for the shortcoming of flash’s



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1197

excruciating slow random writes. On the other hand, sequentially allocating pages is much easier to manage, and more
importantly, it can produce better performance thanks to the wide existence of workloads’ spatial and temporal locality
which can with a high probability cause entire blocks to be invalid and thus erased without incurring additional page
copying-back operations [33]. What’s more, in the figure we only consider write requests, since read requests make no
contributions to the generation of superseded pages.

3.2. ShiftFlash details

3.2.1. Main data structures
In order to keep track of the changing history of mapping entries and support CDP recovery, we have used several data

structures and added modifications to some of the existing data structures. Specifically, we use a CDP_entry containing
logical block address, corresponding timestamp and some auxiliary information to record every obsoletemapping entry, and
all CDP_entries corresponding to the same logical block are linked in the same doubly-linked list. The link list represents the
logical block’s changing history. We extend each mapping entry to include a timestamp indicating when the mapping entry
is created. Handling every overwrite request, a CDP_entry is inserted into the tail of the appropriate list, making elements
of the list time-ordered. Every list head contains its corresponding logical page number and some information (e.g. physical
page number and timestamp) about this logical page’s being written for the first time. All of the lists’ heads are organized in
an array. There exist several tradeoffs between performance and the usages of SRAM. The addition of timestamps into the
modified mapping entries may incur memory overheads, if it’s not affordable, the timestamps can alternatively be stored
at the metadata regions of the mapped pages, at the introduced cost of reading the metadata regions to get the timestamps
every time the pages are superseded. Also, the CDP_Store can alternatively be stored on flashmemory. When the protection
window (defined later) advances, reclaiming the corresponding space occupied by CDP_Store is relatively easy, since it’s
been totally written sequentially along the time dimension. In our current prototype implementation, we add timestamps
to the in-memory mapping entries and store CDP_Store in memory.

3.2.2. Recovery process
In ShiftFlash the recovery process is straightforward, since every logical page’s historical CDP_entries within the

permitted protection time window are kept in CDP_Store. Its simple task is to find each logical page’s mapped page number
that corresponds to the requested recovery time-point and reconstruct the FTL mapping table. In more detail, it scans
through the entire head array, and for each logical page, it walks through the list to find the CDP_entry satisfying the
condition that its timestamp is equal to or less than but nearest close to the recovery time point. If no such entry is found
and its first-written-timewhich is stored in the head of the list is later than the recovery time point, it means that the logical
page has not been written yet at the recovery time point and thus need not be restored. Fig. 3 shows the recovery process
pseudo-code.

3.2.3. How does it work?
In this section, we show how ShiftFlash works with a demonstrating example. To simplify our presentation, we use

updated mapping entries to represent the overwrite requests. For example, (0, 9, T1) represents that the logical page 0 was
overwritten and assigned the new physical page 9 at time T1. Each mapping table entry contains the logical page number
(LPN), the associated physical page number (PPN) and the timestamp. The upper part of Fig. 4 shows how FTL mapping
table evolves, while the bottom shows the content of CDP_Store. The left-most table of the upper part is the initial FTL
mapping table state at time T0, while the middle and right-most tables correspond to T1 and T2 states, respectively. At time
T1, four requests arrive, two of which are overwrites to logical page 0 and 1, causing CDP_entries (2, T0) and (7, T0) to be
added into page 0 and page 1’s lists, respectively. The unchanged mapping entry remains as before, e.g. entry (2, 5, T0) is
the same as at time T0. At time T2, three overwrites happen to logical page 1,3,5, causing another three CDP_entries to be
added onto CDP_Store. Now, suppose later at some time T (T > T2) the flash storage is requested to be restored to time
T ′(T0 < T ′ < T1). Applying the recovery algorithm, we find three CDP_entries (2, T0), (7, T0) and (11, T0) which correspond
to logical page 0,1,6, respectively. Since their timestamp T0 is the low-maximum-less-than recovery time T ′. Additionally,
since logical page 2’s list is empty and its first-written-time T0 is smaller than the recovery time, it should be also included
in the mapping table. Finally, we have a mapping table which contains four valid logical pages which are page 0,1,2 and 6,
whose corresponding mapped physical pages are page 2,7,5 and 11, respectively, shown in Fig. 4.

3.3. Protection window

As time proceeds, superseded pageswould be accumulated to a large amount, causing thewhole capacity to run out. Thus,
one potential limitation of ShiftFlash is its limited allowable past-travelable time period, which we define it as protection
window. Ideally, the longer the protection window, the better it is. However, as we mentioned earlier, CDP is typically
deployed combined with other techniques like periodical backups in practice and it is needed only during the time intervals
between consecutive backups. Thus, the protectionwindow is not strongly required to be very long in realistic use scenarios.
To make the protection window as long as possible, we made two changes to the Garbage Collection (GC) process in the



1198 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

Fig. 3. Pseudo-code of the recovery process.

Fig. 4. The evolution of the mapping table and CDP_Store.

original system. One is that, we enlarge the allocation pool to be the whole SSD space, as opposed to original plane-level
or chip-level strategy. The other is that we lower the cleaning threshold (i.e. the minimum number of free blocks), which
as a result would defer the triggering of GC. However, these two changes would contribute negatively to the application’s
performance, as well as the GC process, as we will see in Section 4. When the garbage collection process is finally triggered,



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1199

Fig. 5. Advancing protection window in ShiftFlash.

ShiftFlash advances the protection window to make free space. Specifically, it sets a larger lower protection time point
(i.e. dropped time point) and releases the superseded pages belonging to the dropped time interval, i.e. releasing the oldest
pages. As shown in Fig. 5, protection window 1’s moving toward protection window 2 would result a dropped interval
[t1, t2]. The pages that belong to the dropped interval are the candidates to be reclaimed. However, not all of the candidates
are allowed to be reclaimed. Considering Fig. 4, if we are going to release all the pages that are before T1, we cannot release
physical page 5. That’s because if we released it, then logical page 2 state would have never been correctly recovered. In
other words, superseded pages cannot be reclaimed if they have not been superseded again after the dropped time point. To
work out this dilemma, we snapshot the FTL mapping table state corresponding to the dropped time point (e.g. t2 in Fig. 5)
as a new initial state, and then update the heads’ first-time-written information to the same as the state in snapshot if their
first written times are prior to the dropped time point.

3.4. Wear leveling and garbage collection process

There are three main background activities running in flash memory: cleaning, wear leveling and GC, which are closely
related to each other. Cleaning is responsible for copying out valid pages from victim blocks before they are erased, i.e.,
reading out all the valid pages and rewriting them to other locations, at the potential expense of flash-inherent write
amplification [33]. The cleaning policy would implicitly choose and determine which blocks are going to be reclaimed.
Wear Leveling is a data placement optimization trying to uniformly wear out all blocks to improve the overall effective flash
lifetime. The GC process is essentially a two-phase process. The first step is cleaning the valid pages from candidate blocks
which are selected by the cleaning policy (e.g. using a greedy approach [6]) to other locations. The second step is to erase
those victim blocks to free space. The specific behaviors of the three activities are subject to the workload’s access patterns
and thus are highly workload sensitive.

In ShiftFlash, the wear leveling mechanism is in principle similar to that of the original flash. The remaining lifetime of
every block is dynamically tracked. The cleaning process chooses the blocks with the highest cleaning efficiency which is
defined as the ratio of invalid pages to total pageswithin a block andmigrates valid pages contained in them to blockswhich
have a relatively longer (e.g. beyond average) remaining lifetime. The differences lie in two aspects. One is that as opposed
to using intra-plane policy in original flash, ShiftFlash integrates both inter-plane and inter-chip copy-back mechanisms,
which is driven by the requirement of longer protection window. It means that valid pages can be copied out from victim
blocks to other erased blocks residing in different planes or even chips. The other is that the definition of cleaning efficiency
is different from the original one. In ShiftFlash, when calculating cleaning efficiency, all superseded pages (as long as they
have not been marked dropped, as discussed later) and currently-mapped pages should be considered as valid, while in
original architecture, only the currently-mapped pages are valid. Additionally, in order to avoid portions of the blocks being
prematurely worn out due to the hot and cold data accesses, it switches the hot and cold region when access disparities
have been observed, by copying the hot data into cold pages and filling cold data into hot pages when conducting cleaning.
For example, in ShiftFlash, the blocks which are constantly/repeatedly written with good temporal locality access patterns
are more likely to be reused andworn out. Since once those blocks are dropped, those superseded pages within themwould
correspond to the same logical page due to locality, causing higher cleaning efficiency and with a high probability of being
selected again for reuse.

When the overall free space of ShiftFlash reaches theminimumthreshold, theGarbage Collection (GC) process is triggered
to advance the protection window and reclaim the oldest superseded pages, as mentioned in Section 3.3. Specifically, it
examines the metadata regions (they include the active lifespan information, which is the time period between the written
time-points of the first and last page) of all blocks to find out the ones that lie in the dropped window, and then marks the
contained pages to be dropped. After that, the cleaning process would migrate the valid pages (recall, in ShiftFlash valid
pages include no-yet-dropped superseded pages and currently-mapped pages) from those victim blocks, and update the
corresponding entries in CDP_Store to remember the actual new locations for them. By contrast, in original flash, it only
needs to copy out those currently-mapped pages. At first thought, it is tempting to conclude that ShiftFlash would incur
significant additional write amplifications relative to the original non-shifting version. However, as we will see later, write
amplification is highly sensitive to access patterns and would not cause too much overhead thanks to the wide locality
exhibited by real world applications.



1200 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

Table 1
Trace characteristics.

Trace Description Num of req Write (%)

Financial1 OLTP 5334,987 76.8
Financial2 OLTP 3699,195 19.3
Cello99 HP-UX OS 443743 70.8
Websearch1 Search app 1055,448 0.12

Table 2
SSD simulation parameters.

Operation type Latency

Page read 25 µs
Page write 200 µs
Block erase 2 ms
Serial access to register 100 µs

4. Evaluation methodology and results

In this section, we evaluate ShiftFlash using two sets of experiments. One is that we use trace-driven simulations to
investigate the performance impacts of ShiftFlash relative to the original architecture, as well as the wear leveling and
garbage collection behaviors. The other one is that we compare it with another two CDP schemes in terms of recovery
performance, which is probably the most important concern of users facing system failures.

4.1. Experimental setup

We have implemented a page-mapping ShiftFlash in Microsoft’s SSD simulator [6] extension to DiskSim [38]. We
configure the SSD’s size to be 64 GB, with 4 kB page size. We used four enterprize class real-world traces, financial1 [39],
financial2 [39], cello99 [40] and Websearch1 [39] to drive the simulator to test ShiftFlash’s performance. Additionally, we
ran IOmeter [41] several times with different I/O patterns and collected the corresponding block-level traces. Then we used
those traces to feed ShiftFlash to study the relationship between its write amplification phenomenon and access patterns.
Due to the lack of source code availability, we implemented a TRAP [26] prototype according to the paper and a variation
of TRAP which we call TRAP_NO_COM in the iSCSI target to make comparisons among them. TRAP_NO_COM is the same as
TRAP except that it logs entire history data rather than only storing the differences between consecutive block updates. The
used trace characteristics and SSD parameters are summarized in Tables 1 and 2, respectively. Before each experiment run,
we deliberately constructed a full page-mapping FTL to emulate that the entire SSD has been fully used (thus WL and GC
processes would be triggered soon) in order to accurately evaluate ShiftFlash. We think using that method would cause the
ShiftFlash to be superseded soon, which is essentially the mechanism underlying ShiftFlash.

4.2. Performance metrics

In this section, we explore the user-perceived performance impacts. To measure the performance impacts of ShiftFlash,
we ran both SSDsim and ShiftFlash simulator with the four traces and reported four main performance metrics. The four
figures in Fig. 6 show the average response time, average read time, average write time and IOPS of SSDsim and ShiftFlash
simulator, respectively. We can make several observations from those figures: (1) for all workload traces, ShiftFlash slightly
underperforms compared with SSDsim. For example, the average response times of Financial1, Financial2, cello99 and
Websearch1 increase by 11.5%, 6.9%, 8.2% and 5.4%, respectively. The IOPS also decreases only by 9.2%, 6.1%, 7.8% and
2.3%, respectively; (2) it seems that the write percentage determines how much the performance drops, i.e. the more write
requests there are, the more severe the performance will degrade. As can be seen from Financial1 and Financial2, Financial1
gets a 11.5% response time increasewhile Financial2 gets a 6.9% response time increase, since Financial1’swrite percentage is
muchhigher than that of Financial2. That results from the fact that aswrite requests consume capacity, the garbage collection
processwould be aggressively triggered and ShiftFlash’s reclaiming process is relativelymore expensive than SSDSim’s, since
ShiftFlash should be much more conservative when finding the pages to be claimed. More apparently, Websearch1 gets
the least performance degradation, since its write percentage is 0.12%. Actually, Websearch1 is a read-dominate workload
and there are almost no overheads caused by CDP functionality in ShiftFlash. What’s more, Websearch1’s sequentiality and
locality also contribute to its relatively better performance. In summary, for all the fourworkloads, ShiftFlash only introduces
trivial overheads, ranging from 6% to 11%, which is generally acceptable in light of its time-shifting functionality. However,
for those performance-critically-sensitive applications that can’t afford such degradations, the time-shifting function can be
flexibly turned off to return it to the original no-shifting architecture.



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1201

Financial 1 Financial 2 Cello99 Websearch
0.0

0.5

1.0

1.5

2.0

2.5

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

SSDsim
ShiftFlash

trace

Financial 1 Financial 2 Cello99 Websearch

SSDsim
ShiftFlash

trace Financial 1 Financial 2 Cello99 Websearch

SSDsim
ShiftFlash

trace

Financial 1 Financial 2 Cello99 Websearch
0.0

0.5

1.0

1.5

2.0

2.5

SSDsim
ShiftFlash

traceav
er

ag
e 

w
rit

e 
re

sp
on

se
 ti

m
e(

m
s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

av
er

ag
e 

re
ad

 r
es

po
ns

e 
tim

e 
(m

s)

0

500

1000

1500

2000

2500

IO
P

S

Fig. 6. The average response time, average read response time, average write response time and IOPS of SSDsim and ShiftFlash for different workload
traces.

Financial 1 Financial 2 Cello99 Websearch1
0

50

100

150

200

250

m
ax

 d
is

pa
rit

y 
of

 r
em

ai
ni

ng
 li

fe
tim

e

workloads

SSDsim
ShiftFlash

Financial 1 Financial 2 Cello99 Websearch1

workloads

SSDsim
ShiftFlash

0

10

20

30

40

50

60

va
ria

nc
e 

of
 r

em
ai

ni
ng

 li
fe

tim
e

Fig. 7. The left picture shows the max remaining lifetime disparities and the right picture shows the variance for the different traces. Max block lifetime
was set to 1000 cycles initially.

4.3. Wear leveling and garbage collection impacts

Obviously, the relative overall performance slowdowns discussed previously are rooted in multiple causes, which
primarily include the affected wear leveling and garbage collection processes. In this section, we are going to get a deeper
look at the microscopic behaviors of WL and GC in both non-shifting and time-shifting architectures under the same sets of
experiments as in the above section, with the purposes of gaining an understanding of the intrinsic relationship between
performance impacts and the background activities and revealing their behavior differences.

To evaluate the wear leveling behaviors, we collected and analyzed the remaining lifetime of all the blocks after the
accomplishments of the experiments and report two related metrics, i.e., max remaining lifetime disparities and statistic
variance of remaining lifetime. Both of the two metrics are good indicators of the block worn-out situations. The figures in
Fig. 7 show the twometrics respectively for the four traces. Note thatwe set the lifetime of each block to be 1000write–erase
cycles before each experiment run. As can be seen from the figures, on the whole, the max disparities and variances for
the respective same workloads of ShiftFlash are almost always uniformly smaller than that of SSDsim, demonstrating
that ShiftFlash doesn’t deteriorate but improves the wear leveling to some extent. For example, Financial1 exhibits max
disparities of 108, 89 and variances of 10.2, 9.4 with SSDsim and ShiftFlash, respectively. Nevertheless, this result is not
surprising. One possible reason is that ShiftFlash canmigrate valid pages fromvictim blocks to other different planes or chips



1202 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

Table 3
The number of migrated pages and its average overheads.

SSDsim ShiftFlash Write (%) Overheads per page

Financial1 14,321 15,728 9.8 1.8 ms/2.5 ms
Financial2 9,873 10,279 4.1 1.6 ms/2.3 ms
Cello99 2,246 2,365 5.3 1.3 ms/2.1 ms
Websearch1 324 412 2.7 0.8 ms/1.1 ms

when conducting the cleaning process, producing better global wear leveling at the cost of higher GC overhead as discussed
later. On the contrary, SSDsim can only migrate valid pages to clean blocks in the same plane, which would potentially be
accessed repeatedly, subjecting it to more reuse and wearing out. Also note that Websearch1 is the exception and differs in
two respects. One is that for both SSDsim and ShiftFlash, it exhibits much higher max disparities and variances. The other
is that ShiftFlash no longer gets better wear leveling. We think the reason lies in the fact that Websearch1 is heavily read-
dominate. More specifically, the total capacity written byWebsearch1 is relatively small and would less likely cause the GC
process to be initiated, during which wear leveling is conducted.

To make a comparison of the GC behaviors in SSDsim and ShiftFlash, we report the number of migrated pages and the
average GC overhead in terms of time spent during the trace simulating experiments. The statistics are presented in Table 3.
Note that the two numbers in each cell of the last column represent the overheads of both SSDsim and ShiftFlash. From the
table, we can make two important observations. First, though it’s necessary to preserve past data in ShiftFlash as discussed
in Section 3.3, we did not see significant write amplifications and the actual write amplifications are application-dependent.
We would investigate further the relationship between write amplifications and access patterns in the subsequent section.
Secondly, the average page migrating cost in ShiftFlash is more expensive than that of SSDsim. This can be attributed to the
following two main reasons. The first reason is that, instead of being migrated to the same plane, valid pages in ShiftFlash
can bemigrated across chips, which is by nature costly due to the serial chip pins and bus’s contention (however, this would
produce better wear leveling, as we have discussed before). The second reason is, as we have mentioned we have lowered
the cleaning threshold in ShiftFlash, which implicitly would delay the initiation of the GC process and make it slower and
harder due to the less available free blocks needed by GC. It’s also interesting to note thatWebsearch1migrates much fewer
pages and spends much less time migrating pages, due to its highly-skewed workload characteristics. Overall, we think the
price of GC impacts is not too high to buy the time-shifting functionality, considering the importance of business continuity.

4.4. Write amplifications

To showmore clearly the relationship betweenwrite amplification and access patterns,we used several IOmeter traces to
study the write amplifications in ShiftFlash. We ran IOmeter with different configurations (producing different controllable
access patterns) each for 30 min and collected the block-level request traces, then fed those traces to both SSDsim and
ShiftFlash, which reports the number of page copy operations at the end of running process. Fig. 8 shows the story. The
x-axis represents I/O patterns, e.g. 1:1(40%) means that the read/write ratio is 1:1 and the randomness is 40%. From that
figure, we know that for workloads having the same randomness, the workloads with more writes would experience more
page migrations, e.g. both SSDsim and ShiftFlash would experience more page copy operations with 1:2(40%) than with
1:1(40%). That’s because only writes would consume capacity and trigger the GC process and erasure operations. We also
note that for fixed read/write ratios, the workloads with higher randomness would cause more copy operations for both
SSDsim and ShiftFlash. In other words, ShiftFlash would not experience too many write amplifications for workloads with
reasonable locality, which is generally true for realistic applications. That’s because good locality would generate a higher
cleaning efficiency in ShiftFlash. Furthermore, ShiftFlash would amplify flash’s low small random write shortcoming by
exaggerating page migrations, which results from the difference in their clean policy, i.e. for SSDsim, as long as the pages
that belong to a block are all superseded, they can all be claimed immediately. However, ShiftFlash probably needs to copy
some pages out of the block and relocates some of them somewhere prior to erasure operations, as discussed in Section 3.3.

4.5. Recovery comparison

Finally, we compare the recovery performance of ShiftFlash with the well-known stat-of-the-art block level CDP scheme
TRAP and its modified version TRAP_NO_COM. Though TRAP was originally implemented in the iSCSI target to verify its
efficacy in reducing the storage capacity occupied by CDP history data, our purpose here is just to compare the time taken
to finish recovering the same amount of data at the device level from the perspective of users who are experiencing system
failures and wanting the systems to resume immediately. We wrote a utility program to write configurable sizes of data
to the iSCSI target and logged the block-level traces to feed the ShiftFlash simulator, then reverted the state to the time
point before the writing operation. We changed the data size and record the time taken to complete the recovery process.
The result is shown in Fig. 9. As shown in that figure, ShiftFlash consistently outperforms both TRAP and TRAP_NO_COM
by a large extent and the performance gap increases with the increasing amount of data volume, while TRAP_NO_COM
is slightly better than TRAP for an absence of coding and decoding operations. Though the local network bandwidth may



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1203

1:2(40%) 1:2(60%) 1:1(40%) 1:1(60%) 2:1(40%) 2:1(60%)
0

200

400

600

800

1000

1200

1400

nu
m

 o
f p

ag
e 

co
py

 o
pe

ra
tio

ns

SSDsim
ShiftFlash

R/W (Randomness)

Fig. 8. The page copy operations caused by erase.

0 50MB 100MB 200MB 500MB 1000MB 1.5GB 2GB
0

50

100

150

200

250

300

350

re
co

ve
ry

 ti
m

e 
(s

)

ShiftFlash
TRAP
TRAP_NO_COM

Data volume

Fig. 9. CDP recovery performance comparison.

bottleneck TRAP and TRAP_NO_COM, the main reason why ShiftFlash outperforms is that ShiftFlash only needs to restore
the FTL mapping table without involving any data reading and writing, which is exactly the observation that motivated our
work.

5. Discussion

Time-shifting is an important capability to ensure business continuity. It can be implemented at different level along the
data path. However, existing hard disk drives-based CDP implementations, either at file system level, like VersiongFS [25]
and CVFS [23] or block level like TRAP [26], all cause non-trivial overheads to the original system. The reason is that
they should not only keep the metadata changes, but also involve data read and write on the data path. By contrast,
ShiftFlash is more lightweight, since it needs only to store the metadata changes without any data transfer expense on
the data path thanks to the overwrite-forbidden property. One potential limitation of ShiftFlash may be its relatively small
protection window due to superseded pages being reclaimed. Theoretically, the permitted length of the protection window
is proportional to overall capacity and inversely proportional to consuming speed (write frequency). Even if it is the truth,
we anticipate the potential applicability of ShiftFlash based on two observed facts. One is that, as semiconductor techniques
advance, SSDs capacities are getting much larger and prices have steadily declined, thus they are able to sustain for a longer
time period without reclaiming superseded pages imperatively. For example, for one 160 GB SSD, assuming the application
continuously writes 20 MBps to it, the protection window can be 2.27 h. In practice, it would be much longer. The other
one is that, in reality, CDP typically is used together with other backup techniques, e.g. periodic backups and snapshots. It is
reasonably sufficient for CDP just to work during the time interval between consecutive backups, which is typically several
hours or one day.

6. Related work

Flash and SSDs Related: Over the past decade, flash and SSDs have been extensively studied in the literature to overcome
their inherent constraints, primarily focusing on FTL algorithms and write endurance. Agrawal et al. [6] investigated a
range of design tradeoffs that are relevant to NAND-flash solid-state storage and developed a SSD simulator that can be
seamlessly integrated into DiskSim [38] simulation environment. Gal and Toledo [5] made a survey on the algorithms and
data structures used in flash memory. The Block Associative Sector Translation (BAST) [11] scheme exclusively associates
a log block with a data block which would potentially cause superseded pages to be widely scattered across the blocks,



1204 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

incurring too often block merger operations. Fully Associative Sector Translation (FAST) [32] improves BAST by allowing
log blocks to be shared by all data blocks, enhancing the utilization of log blocks. The locality-Aware Sector Translation
(LAST) scheme [42] overcomes the shortcomings of FAST through providing multiple sequential log blocks to exploit spatial
locality in workloads. The superBlock FTL [9] scheme combines consecutive logical blocks into a superblock to utilize
block level spatial locality in workloads. DFTL [13] caches part of the mapping table in limited RAM to support page-level
mapping. A reconfigurable FTL [8] is proposed to dynamically adjust the associations between data blocks and log blocks
according to characteristics of target workloads. Flash write endurance is enhanced by employing sophisticated buffer
management [7,43], or using the HDD as cache to absorb small randomwrites [16], or utilizing CA-FTL [44,45] which aims to
diminish the amount of write traffic to flash by applying de-duplication. Hu et al. [33] analyzed write amplification in flash
memory. Yang et al. proposes a hybrid array architecture I-CASH [18] composed of HDDs and SSDs. Gordon [3] integrates
flash storage into large-scale clusters to achieve high-performance and energy efficiency. Exhaustive analysis of trade-offs
between power, energy and performance were made in that paper. Narayanan et al. [46] and Guerra [47] investigated the
integration of SSDs to storage system from a viewpoint of financial cost. Empirical studies [34,48] have been conducted to
speculate about flash/SSD’s internal details which are not officially released publicly. Flash specific file systems [31,49] have
also been proposed in order to make the most out of flash storage. Jung [10] proposes a group-based flash wear-leveling
algorithmwhich reduces memory usage by grouping several logically sequential blocks and only managing group summary
information.

Of the above related work, CA-FTL is very similar to ShiftFlash in the sense that they also realize additional functionality,
which is data de-duplication, within the original architecture. But CA-FTL aims to reduce the write traffic to flash to
prolong its lifetime,while ShiftFlash resolves to improve data resiliency and is orthogonal to CA-FTL. Furthermore, ShiftFlash
is implemented in a much more lightweight manner through exploiting already existing opportunity. As opposed to
ShiftFlash’s persisting with superseded pages as long as possible, Wei [27] suggests that superseded pages should be
sanitized immediately for the better of data security. They achieve that purpose by adding an extension to FTLwhich utilizes
the fact that flash bits can only be programmed from 1 to 0 s, i.e. from erased states to programmed/written states.
Walk back to the past: Updates to storage states can be monitored and logged at file system level and block level.
Versionfs [25] is a user-level file versioning system which is very flexible and highly portable. It can work with any Unix-
semantic-compliant file systems. It creates file versions automatically and provides a host of interfaces to configure a
variety of policies such as data retention and version storage policies. Ext3cow [24] achieves time-shifting functionality
by deploying a copy-on-write scheme. Modifying ext3 file system code while preserving API interfaces, ext3cow is totally
transparent to upper layers. Soules et al. [23] have examined two space-efficient file versionmetadatamanagement schemes
in Comprehensive Versioning File System (CVFS). UCDP [50] realizes user-level NFS-specific file versioning by logging NFS
requests and responses. Wayback [51] is a user-level file system built on the FUSE framework. Peterson [52] studies how to
securely delete earlier versions of individual files. TRAP [26] is a block level continuous data protection architecture with its
focus on minimizing the necessary storage capacity for historic versions. Knowing the fact that consecutive updates to the
same block exhibit only minimal differences, TRAP compactly stores the XORed result of the two versions, whose content
is for the most part zeros. Laden [22] proposed four possible block level CDP architecture alternatives in the controller and
studies their respective overheads in terms of space and extra disk I/Os. UVFS [53] is designed to reconstruct file versions
from disk block versionsmaintained by a block level CDP. SWEEPER [54] attacks the problem of quickly identifying themost
suitable recovery point for a clean data state in a CDP system by deploying Event monitoring, Checkpoint Indexing, and new
search techniques.

7. Conclusion

As the saying goes, every coin has two sides. Flash memory based storage is known to have several limitations resulting
from its inherent physical property. Superseded pages are the ‘‘negative’’ results of those limitations, since once superseded,
they are invalid and would remain in the flash just as garbage until they are erased again. Interestingly, as is always the case
with things in the real world, that ‘‘garbage’’ can also potentially be leveraged to realize special purposes, just like ShiftFlash
has demonstrated. While sophisticated and carefully-designed ECC and the removal of mechanical rotating parts are there
to make flash memory based storage more reliable, we have explored the flash reliability problem from a distinctive angle.
By leveraging the superseded garbage pages in the flash, we have implemented time-shifting functionality at the device
level, making it more robust and resilient and the introduced overheads are minimal and acceptable. Due to the numerous
advantages of SSDs and their longer realistic lifetime than commonly believed [55], SSDswill getwidely deployed. Hopefully,
we anticipate that ShiftFlash would play its role in the storage system along with the emerging wide deployment of SSDs.

Acknowledgments

The authors are so grateful to the anonymous reviewers, in particular, our shepherd Prashant Shenoy, for their very
constructive and insightful comments and feedback which substantially improved the paper’s quality. We also would like
to express our sincere gratitude to the whole program committee, particularly the chairs, for their patience in answering
our various questions. This work is supported in part by the National Basic Research Program (973 Program) of China under



P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206 1205

Grant No. 2011CB302305, the National High Technology Research and Development Program (863 Program) of China under
Grant No. 2009AA01A402.

References

[1] F. Chen, S. Jiang, X. Zhang, SmartSaver: turning flash drive into a disk energy saver for mobile computers, in: Proceedings of ISLPED’06, October 2006.
[2] M.L. Chiang, P.C.H. Lee, R.C. Chang, Cleaning policies in mobile computers using flash memory, The Journal of Systems and Software 48 (3) (1999)

213–231.
[3] A.M. Caulfield, L.M. Grupp, S. Swanson, Gordon: using flash memory to build fast, power-efficient clusters for data-intensive applications, ACM

SIGPLAN Notices 44 (3) (2009) 217–228.
[4] D. Gantenbein, Faster servers, services with flashstore, 2011. http://research.microsoft.com/en-us/news/features/flashstore-021411.aspx.
[5] E. Gal, S. Toledo, Algorithms and data structures for flash memories, in: ACM Computing Survey’05, vol. 37 (2), 2005, pp. 138–163.
[6] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, Design tradeoffs for SSD performance, in: Proceedings of USENIX Annual Technical Conference,

2008, pp. 57–70.
[7] H. Kim, S. Ahn, BPLRU: a buffer management scheme for improving random writes in flash storage, in: Proceedings of the 6th USENIX Conference on

File and Storage Technologies, FAST’08, San Jose, CA, February 2008.
[8] C. Park,W. Cheon, J. Kang, A reconfigurable FTL (flash translation layer) architecture forNAND flash-based applications, ACMTransactions in Embedded

Computing Systems 7 (4) (2008).
[9] J. Kang, H. Jo, J. Kim, J. Lee, A superblock-based flash translation layer for NAND flash memory, in: Proceedings of the 6th ACM & IEEE International

Conference on Embedded Software, EMSOFT’06, New York, USA, 2006, pp. 161–170.
[10] D. Jung, Y.-H. Chae, H. Jo, A group-basedwear-leveling algorithm for large-capacity flashmemory storage systems, in: Proceedings of the International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems, CASES’07, September 2007, pp. 160–164.
[11] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, A space-efficient flash translation layer for compactflash systems, IEEE Transactions on Consumer Electronics 48

(2) (2002) 366–375.
[12] A. Birrell, M. Isard, C. Thacker, T. Wobber, A design for high-performance flash disks. Technical Report MSR-TR-2005-176, Microsoft Research,

December 2005.
[13] A. Gupta, Y. Kim, B. Urgaonkar, DFTL: a flash translation layer employing demand-based selective caching of page-level address mappings, in:

Proceedings of ASPLOS’09, Washington, DC, March 2009.
[14] J. Matthews, S. Trika, D. Hensgen, R. Coulson, K. Grimsrud, IntelRturbo memory: nonvolatile disk caches in the storage hierarchy of mainstream

computer systems, Transactions on Storage 4 (2) (2008) 1–24.
[15] Microsoft Corporation, Microsoft Windows ReadyBoost. http://www.microsoft.com/windows/windows-vista/features/readyboost.aspx.
[16] G. Soundararajan, V. Prabhakaran,M. Balakrishnan, T.Wobber, Extending SSD lifetimeswith disk basedwrite caches, in: Proceedings of the 8thUSENIX

Conference on File and Storage Technologies, FAST’10, San Jose, CA, February 2010.
[17] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, A hybrid solid-state storage architecture for the performance, energy consumption, and lifetime improvement,

in: Proceedings of HPCA’10, Bangalore, India, January 2010.
[18] J. Ren, Q. Yang, I-CASH: intelligently coupled array of SSDs and HDDs, in: Proceedings of HPCA’2011, February 2011.
[19] Y. Kim, A. Gupta, B. Urgaonkar, MixedStore: an enterprise-scale storage system combining solid-state and hard disk drives, Technical Report CSE

08-017, Department of Computer Science and Engineering, The Pennsylvania State University, September 2008.
[20] P. Pavan, R. Bez, P. Olivo, E. Zanoni, Flash memory cells—an overview, Proceedings of the IEEE 85 (1997).
[21] Storage Networking Industry Association. An overview of today’s continuous data protection (CDP) solutions, 2006. http://www.snseurope.com/

supplements/snia-1-4.pdf.
[22] G. Laden, P. Ta-Shma, E. Yaffe, Architectures for controller based CDP, in: Proceedings of the 5th USENIX Conference on File and Storage Technologies,

FAST’07, 2007.
[23] C.A.N. Soules, G.R. Goodson, J.D. Strunk, G.R. Ganger, Metadata efficiency in versioning file systems, in: Proceedings of 2nd USENIX Conference on File

and Storage Technologies, FAST’03, March 2003.
[24] Z.N.J. Peterson, R. Burns, Ext3cow: a time-shifting file system for regulatory compliance, ACM Transactions on Storage 1 (2) (2005).
[25] K.M. Reddy, C.P. Wright, A. Himmer, E. Zadok, A versatile and user-oriented versioning file system, in: Proceedings of the 3rd USENIX Conference on

File and Storage Technologies, FAST’04, 2004.
[26] Q. Yang, W. Xiao, J. Ren, TRAP-array: a disk array architecture providing timely recovery to any point-in-time, in: Proceedings of the 33rd Annual

International Symposium on Computer Architecture, ISCA’06, June 2006, pp. 289–300.
[27] M. Wei, L.M. Grupp, F.E. Spada, S. Swanson, Reliably erasing data from flash-based solid state drives, in: Proceedings of the 9th USENIX Conference on

File and Storage Technologies, FAST’11, February 2011.
[28] T. Claburn, Google plans to use Intel SSD storage in servers, http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=

207602745.
[29] Solid State Storage Initiative. NAND Flash Solid State Storage for the Enterprise, An In-Depth Look at Reliability, 2009.
[30] M-Systems. Two technologies compared: NOR vs. NAND, White Paper, 2003.
[31] A. Ban, Flash file system. United States Patent, No. 5, 404, 485, April 1995.
[32] S. Lee, D. Park, T. Chung, D. Lee, S. Park, H. Song, A log buffer-based flash translation layer using fully-associative sector translation, ACM Transactions

on Embedded Computing Systems 6 (3) (2007).
[33] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka,Write amplification analysis in flash-based solid state drives, in: Proceedings of SYSTOR’2009, 2009.
[34] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel, J.K. Wolf, Characterizing flash memory: anomalies, observations and

applications, in: Proceedings of MICRO’09, New York, USA, 2009.
[35] Z. Yang, Y.F. Dai, AutoProc: an automatic proactive replication scheme for P2P storage, Science China Information Sciences 54 (2011) 1–10.

doi:10.1007/s11432-011-4260-5.
[36] D. Hitz, J. Lau, M. Malcolm, File system design for an NFS file server appliance, in: Proceedings of the Winter 1994 USENIX Conference. San Francisco,

CA, January 1994.
[37] Numonyx White Paper. The basics of phase change memory (PCM) technology. http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_

WP.pdf.
[38] J. Bucy, J. Schindler, S. Schlosser, G. Ganger, DiskSim 4.0, 2010. http://www.pdl.cmu.edu/DiskSim.
[39] Available at: http://traces.cs.umass.edu/index.php/Storage.
[40] HP Labs, Tools and Traces. http://tesla.hpl.hp.com/.
[41] IOMeter. http://www.iometer.org.
[42] S. Lee, D. Shin, Y. Kim, J. Kim, LAST: locality-aware sector translation for NAND flash memory-based storage systems, in: Proceedings of the

International Workshop on Storage and I/O Virtualization, Performance, Energy, Evaluation and Dependability, SPEED2008, Feburary 2008.
[43] J. Hu, H. Jiang, L. Tian, L. Xu, PUD-LRU: an erase-efficient write buffermanagement algorithm for flashmemory SSD, in: Proceedings of the 18th Annual

IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS 2010, August,
2010.

[44] A. Gupta, R. Pisolkar, B. Urgaonkar, A. Sivasubramaniam, Leveraging value locality in optimizing NAND flash-based SSDs, in: Proceedings of the 9th
USENIX Conference on File and Storage Technologies, FAST’11, February 2011.

http://research.microsoft.com/en-us/news/features/flashstore-021411.aspx
http://www.microsoft.com/windows/windows-vista/features/readyboost.aspx
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.snseurope.com/supplements/snia-1-4.pdf
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://www.informationweek.com/news/storage/systems/showArticle.jhtml?articleID=207602745
http://dx.doi.org/doi:10.1007/s11432-011-4260-5
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.pdl.cmu.edu/DiskSim
http://traces.cs.umass.edu/index.php/Storage
http://tesla.hpl.hp.com/
http://www.iometer.org


1206 P. Huang et al. / Performance Evaluation 68 (2011) 1193–1206

[45] F. Chen, T. Luo, X. Zhang, CAFTL: a content-aware flash translation layer enhancing the lifespan of flashmemory based solid state drives, in: Proceedings
of the 9th USENIX Conference on File and Storage Technologies, FAST’11, February 2011.

[46] D. Naraynan, E. Thereska, E. Donnelly, Migrating enterprise storage to SSDs: analysis of tradeoffs, in: Proceedings of EuroSys’09. Nuremberg, Germany,
March 2009.

[47] J. Guerra, H. Pucha, J. Glider, W. Belluomini, R. Rangaswami, Cost effective storage using extent based dynamic tiering, in: Proceedings of the 9th
USENIX Conference on File and Storage Technologies, FAST’11, February 2011.

[48] F. Chen, D.A. Koufaty, X. Zhang, Understanding intrinsic characteristics and system implications of flash memory based solid state drives, in:
Proceedings of SIGMETRICS/Performance’09, Seattle, WA, June 2009.

[49] W.K. Josephson, L.A. Bongo, D. Flynn, DFS: a file system for virtualized flash storage, in: Proc. of the 8th USENIX Conference on File and Storage
Technologies, FAST’10, February 2010.

[50] N. Zhu, T. Chiueh, Portable and efficient continuous data protection for network file servers, in: Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN’07, 2007.

[51] B. Cornell, P.A. Dinda, F.E. Bustamante, Wayback: a user level versioning file system for Linux. in: USENIX Annual Technical Conference, 2004.
[52] Z.N.J. Peterson, R. Burns, J. Herring, Secure deletion for a versioning file system, in: Proc. of the 4thUSENIX Conference on File and Storage Technologies,

FAST’05, December, 2005.
[53] M. Lu, T. Chiueh, File Versioning for block-level continuous data protection, in: Proceedings of the 29th IEEE ICDCS, ICDCS’2009, 2009.
[54] A. Verma, K. Voruganti, R. Routray, R. Jain, SWEEPER: an efficient disaster recovery point identification mechanism, in: Proceedings of the 6th USENIX

Conference on File and Storage Technologies, FAST’08, San Jose, CA, February 2010, 2008.
[55] V. Mohan, T. Siddiqua, S. Gurumurthi, R. Stan, How I learned to stop worrying and love flash endurance, in: Proceedings of HotStorage’10, Boston, MA,

June 2010.

Ping Huang was born in 1984. Currently, he is a Ph.D. student majoring in computer architecture at HuaZhong University of
Science and Technology (HUST), China. His research interests include distributed storage systems, operating systems, file systems
and emerging storage technologies, etc. (Email:pinghp.hust@gmail.com)

Ke Zhou was born in 1974 in Xiangtan, Hunan, China. He received the Ph.D. degree from the College of Computer Science and
Technology, HuaZhongUniversity of Science and Technology (HUST) in 2003. Currently, he is a Professor of the College of Computer
Science and Technology at HUST. His main research interests include computer architecture, network storage systems, parallel
I/O, storage security and network data behavior theory. (Corresponding Author, Email:k.zhou@hust.edu.cn)

Chunling Wu was born in 1981 in Guilin, China. She received her B.S and M.S degrees from Guilin University of Electronic
Technology in 2006 and 2009, respectively. Currently, she is a lecturer at Guilin Normal College. Her research interests include
parallel computer architecture, operating systems and embedded systems. (Email:wcl0203107@21cn.com)

mailto:pinghp.hust@gmail.com
mailto:k.zhou@hust.edu.cn
mailto:wcl0203107@21cn.com

	ShiftFlash: Make flash-based storage more resilient and robust
	Introduction
	Background
	Flash and SSDs background
	Time-shifting function

	ShiftFlash design and implementation
	The generation of superseded pages
	ShiftFlash details
	Main data structures
	Recovery process
	How does it work?

	Protection window
	Wear leveling and garbage collection process

	Evaluation methodology and results
	Experimental setup
	Performance metrics
	Wear leveling and garbage collection impacts
	Write amplifications
	Recovery comparison

	Discussion
	Related work
	Conclusion
	Acknowledgments
	References


